Thursday, September 15, 2011

About designing the routes for training endurance (part 2)


Juan Marin Miranda

Taking into account the adaptation of the climber to the route, as I mentioned in previous article, I would like to add some interesting facts to consider.

First let me cite the study by De Geus (2006) whose aim was to determine whether climbing routes with different inclination and / or displacement, but with equal difficulty affect physiological responses. The authors' hipótesis was that traverse climbing is physiologically less demanding than climbing up because it would require a lower percentage of the maximum values ​​at a treadmill maximum test.

15 climbers were evaluated (7b-8a), a maximum test tape (oxygen consumption, lactate and perceived exertion scale of Borg), and non climbers were evaluated on the same parameters, including heart rate, in 4 routes (7c difficult) with different inclination or displacement (the climbers were able to work the movements of the routes) and conducted in a random order. The characteristics of the route weres the following:

The subjects were asked to climb continuosly at a self pace with no rests longer than 5 seconds only for magnesium both hands. The climbers warmed up in 3 routes 6a, 6b and 7a +,then rested 30 minutes prior to the first route, then rested another 30 minutes and climbed the following route in a random order. One day off and did the test again with the other two routes.


It was measured the total time on the route, heart rate and continuos gas exchange in the test, and lactate concentration before and warm before and after each route. They also measured the rateo f perceived exertion.
The average climbing time was 3 m 22 s  22s and climbers  were longe on the vertical route with vertical displacement (VR) compared with the vertical traverse in vertical  wall and with the vertical displacement in the overhanging wall. They found higher velocity of execution in overhanging routes (both, traverse and vertical displacement). Also the peak and average heart rate was higher in the vertical displacement route.


This could be the result of the center of gravity movement . In vertical displacement, the center of gravity moves in opposition to the line of gravity, while in traverse displacement it moves perpendicular to it.



The average oxygen consumption was significantly lower in the vertical traverse offset from the other three conditions.

This results indicate that climbing four routes of the same difficulty but different inclination and / or displacement leads to a peak and average heart rate significantly higher on routes with vertical displacement. The route with vertical displacement and overhanging wall was more physiologically demanding . Heart rate, oxygen consumption and lactate concentrations were significantly lower on traverse routes.


The vertical traverse route was the least physiologically demanding . Possibly this is the result of the type of muscle contraction, which demands more technical and / or better relative rest  positions as a result of  angle of the wall and because the body moves horizontally.


In another study by Noe et al (2001) analyzed the reaction forces and variations in technique of vertical climbing and overhanging positions. The climbers voluntarily let go a foot and seek balance. The overhanging state of quadrupedia was characterized by a significant participation of the arms to prevent fthe all. Moreover, the horizontal forces applied were less important, suggesting that the balance is easier to maintain than in the vertical wall. Tripedia status (when releasing a foot) was characterized by  smaller contralateral forces to transfer to the remaining holds, enhancing the safety margin on the hands, which indicates that the weight of the climber is mainly supported by the upper body. This study suggests that balance is easier in overhanging walls but at the expense of increased energy expenditure, whereas in vertical wall, the vertical force applied to the holds only prevent vertical collapse while the body weight counterbalances by the horizontal forces that are much higher than in the overhanging state.
When looking for the intensity of the training route to produce relevant ,physiological adaptations presents us with many things to take into account not only the difficulty determined by graduation, but also the inclination of the wall and the direction of movement, and other conditions dependent on the climber characteristics that determines the demand level of  for the routes.


In a study by Sibella (2007) analyzed the strategies of different climbers in horizontal and vertical displacement. The climbers had to climb 3 meters traverse and then 3 meters vertical, with their own style, and choosing the necessary holds for climbing. Movements were filmed with positiontrackers with 6 infrared cameras. The marks were placed in locations related to motion analysis. There were two main strategies to solve the task: first,based on the ¨agility ¨ that requires  lower speed and lower power to move,while the second based on ¨power¨ that requires greater speed and more strength to do the movements. Obviously the first is the most effective strategy,since it requires less power, more fluidity and greater balance control. This study shows that different types of climbers have a higher energy demand if they adopt the second strategy with regard the first strategy. So we can take into account the principle of individualization when designing the routes , and of course think that the more technical climbers are more efficient. Work on technique is the main task when looking for an economic performance.


Zampagni et al (2010) studied the posture and movement coordinationa dopted by climbers. They compared the center of gravity movement and feet vertical reaction forces on climbers and non climbers. Contrary to what they thought, the climbers did not keep the center of gravity closer to the wall, even more far tended to take longer than control subjects, and had large lateral oscillations associated with asignificant redistribution of weight between the legs during the phase in which both feet were supported. The authors conclude that this is because the experts have developed a diagonal preferably vertical motion, ie the weight is transferred to the left foot when you want to move his right hand, then return to balanced and vice versa. Control subjects have a lower oscillation, suggesting a wasteful strategy when making the move.


It is importan to note:
- To increase the stimulus intensity it is possible to vary the route, the  displacement direction and/or the wall inclination
- With poor technical climbers , the physiological intensity of the individual movements will be higher
- So individualization is a must here, consequently the design of routes should be personal and should meet each  climber needs


Juan Martin Miranda

Referencias:

De Geus, B., Villanueva OʼDriscoll, S., & Meeusen, R. (2006). Influence of climbing style on physiological responses during indoor rock climbing on routes with the same difficulty. European Journal of Applied Physiology, 98(5), 489-496.


Noé, F., Quaine, F., & Martin, L. (2001). Influence of steep gradient supporting walls in rock climbing: biomechanical analysis. Gait & Posture, 13(2), 86-94.

Sibella, F., Frosio, I., Schena, F., & Borghese, N. A. (2007). 3D analysis of the body center of mass in rock climbing. Human Movement Science, 26(6), 841-852

Zampagni ML, Brigadoi S, Schena F, Tosi P, Ivanenko YP (2010). Idiosyncratic control of the center of mass in expert climbers. Scandinavian journal of medicine & science in Sports, 2010 Mar 11. [Epub ahead of print]