Thursday, September 15, 2011

About designing the routes for training endurance (part 2)


Juan Marin Miranda

Taking into account the adaptation of the climber to the route, as I mentioned in previous article, I would like to add some interesting facts to consider.

First let me cite the study by De Geus (2006) whose aim was to determine whether climbing routes with different inclination and / or displacement, but with equal difficulty affect physiological responses. The authors' hipótesis was that traverse climbing is physiologically less demanding than climbing up because it would require a lower percentage of the maximum values ​​at a treadmill maximum test.

15 climbers were evaluated (7b-8a), a maximum test tape (oxygen consumption, lactate and perceived exertion scale of Borg), and non climbers were evaluated on the same parameters, including heart rate, in 4 routes (7c difficult) with different inclination or displacement (the climbers were able to work the movements of the routes) and conducted in a random order. The characteristics of the route weres the following:

The subjects were asked to climb continuosly at a self pace with no rests longer than 5 seconds only for magnesium both hands. The climbers warmed up in 3 routes 6a, 6b and 7a +,then rested 30 minutes prior to the first route, then rested another 30 minutes and climbed the following route in a random order. One day off and did the test again with the other two routes.


It was measured the total time on the route, heart rate and continuos gas exchange in the test, and lactate concentration before and warm before and after each route. They also measured the rateo f perceived exertion.
The average climbing time was 3 m 22 s  22s and climbers  were longe on the vertical route with vertical displacement (VR) compared with the vertical traverse in vertical  wall and with the vertical displacement in the overhanging wall. They found higher velocity of execution in overhanging routes (both, traverse and vertical displacement). Also the peak and average heart rate was higher in the vertical displacement route.


This could be the result of the center of gravity movement . In vertical displacement, the center of gravity moves in opposition to the line of gravity, while in traverse displacement it moves perpendicular to it.



The average oxygen consumption was significantly lower in the vertical traverse offset from the other three conditions.

This results indicate that climbing four routes of the same difficulty but different inclination and / or displacement leads to a peak and average heart rate significantly higher on routes with vertical displacement. The route with vertical displacement and overhanging wall was more physiologically demanding . Heart rate, oxygen consumption and lactate concentrations were significantly lower on traverse routes.


The vertical traverse route was the least physiologically demanding . Possibly this is the result of the type of muscle contraction, which demands more technical and / or better relative rest  positions as a result of  angle of the wall and because the body moves horizontally.


In another study by Noe et al (2001) analyzed the reaction forces and variations in technique of vertical climbing and overhanging positions. The climbers voluntarily let go a foot and seek balance. The overhanging state of quadrupedia was characterized by a significant participation of the arms to prevent fthe all. Moreover, the horizontal forces applied were less important, suggesting that the balance is easier to maintain than in the vertical wall. Tripedia status (when releasing a foot) was characterized by  smaller contralateral forces to transfer to the remaining holds, enhancing the safety margin on the hands, which indicates that the weight of the climber is mainly supported by the upper body. This study suggests that balance is easier in overhanging walls but at the expense of increased energy expenditure, whereas in vertical wall, the vertical force applied to the holds only prevent vertical collapse while the body weight counterbalances by the horizontal forces that are much higher than in the overhanging state.
When looking for the intensity of the training route to produce relevant ,physiological adaptations presents us with many things to take into account not only the difficulty determined by graduation, but also the inclination of the wall and the direction of movement, and other conditions dependent on the climber characteristics that determines the demand level of  for the routes.


In a study by Sibella (2007) analyzed the strategies of different climbers in horizontal and vertical displacement. The climbers had to climb 3 meters traverse and then 3 meters vertical, with their own style, and choosing the necessary holds for climbing. Movements were filmed with positiontrackers with 6 infrared cameras. The marks were placed in locations related to motion analysis. There were two main strategies to solve the task: first,based on the ¨agility ¨ that requires  lower speed and lower power to move,while the second based on ¨power¨ that requires greater speed and more strength to do the movements. Obviously the first is the most effective strategy,since it requires less power, more fluidity and greater balance control. This study shows that different types of climbers have a higher energy demand if they adopt the second strategy with regard the first strategy. So we can take into account the principle of individualization when designing the routes , and of course think that the more technical climbers are more efficient. Work on technique is the main task when looking for an economic performance.


Zampagni et al (2010) studied the posture and movement coordinationa dopted by climbers. They compared the center of gravity movement and feet vertical reaction forces on climbers and non climbers. Contrary to what they thought, the climbers did not keep the center of gravity closer to the wall, even more far tended to take longer than control subjects, and had large lateral oscillations associated with asignificant redistribution of weight between the legs during the phase in which both feet were supported. The authors conclude that this is because the experts have developed a diagonal preferably vertical motion, ie the weight is transferred to the left foot when you want to move his right hand, then return to balanced and vice versa. Control subjects have a lower oscillation, suggesting a wasteful strategy when making the move.


It is importan to note:
- To increase the stimulus intensity it is possible to vary the route, the  displacement direction and/or the wall inclination
- With poor technical climbers , the physiological intensity of the individual movements will be higher
- So individualization is a must here, consequently the design of routes should be personal and should meet each  climber needs


Juan Martin Miranda

Referencias:

De Geus, B., Villanueva OʼDriscoll, S., & Meeusen, R. (2006). Influence of climbing style on physiological responses during indoor rock climbing on routes with the same difficulty. European Journal of Applied Physiology, 98(5), 489-496.


Noé, F., Quaine, F., & Martin, L. (2001). Influence of steep gradient supporting walls in rock climbing: biomechanical analysis. Gait & Posture, 13(2), 86-94.

Sibella, F., Frosio, I., Schena, F., & Borghese, N. A. (2007). 3D analysis of the body center of mass in rock climbing. Human Movement Science, 26(6), 841-852

Zampagni ML, Brigadoi S, Schena F, Tosi P, Ivanenko YP (2010). Idiosyncratic control of the center of mass in expert climbers. Scandinavian journal of medicine & science in Sports, 2010 Mar 11. [Epub ahead of print]



Tuesday, September 6, 2011

About designing the routes to train endurance

When we try to work endurance, what is usually done is sets and reps on one or more pre-designed routes. Regardless if it is short or long endurance, as coaches we propose one or more routes for our athletes and they must repeat certain number of times and in certain Lumber of sets, along with its corresponding rest times. 
  
So far, training can be strictly planned, but measuring the intensity that poses a route is not so easy, and worse in climbing, an sport dominated by complex technical gestures. Repeating a route and technically perfect their movements (those little subtleties that make movements easier), decreases the intrinsic intensity of the route, and therefore the athlete is  not training with an homogeneous intensity over the sets and reps. 
  
An example of this can be seen in the following graph heart rate, where a climber climbed the same route, on different days. 
Here we take heart rate as a value that indicates the effort intensity on the climber's body (can also include psychological aspects) and not as an difficulty index of the route.



It is interesting how for the same route, made virtually in the same time, the effort intensity is significantly lower when performed a second time, about 10-15 beats less throughout the entire route. We can also see that fluctuations in heart rate vary with the different partial intensities of the route, such as a roof or a large overhang that makes heart rate rise. This also shows that the intensity is not constant along the entire route

Fortunately, since early this year,  Vanessa España Romero et cols, published a very interesting study in the Euopean Journal of Applied Physiology (1). They evaluated 9 experienced climbers in the same same route in a number of physiological parameters. The study consisted of climbing a 35 moves  6a (5.10) route  in 9 opportunities, separate them by 1 week. The climbers were allowed to continue their usual training, but they could only climb the route in the instances provided for evaluation.

The researchers compared the first, fourth and ninth attempt. The results are detailed in the table below.



One of the interesting facts to note is the decrease of the total realization time, 2.02 minutes to 1.38 minutes, probably causing less energy expenditure (17.0 to 11.5 Kcal). Just like that as expressed in Article ¨The faster movement over the repetitions probably reduced the overall time of isometric work and thereby lowered the total climbing energy expenditure. This could also be related to a concomitant improvement in the participants’ climbing technique. ¨

And the latter is very important to keep in mind when prescribing exercise. In climbing there are  constant technical adjustments that makes that the different intensities are related to the degree of processing each individual gesture (movement) of the route, which makes the intensity varies over the time if the athlete trains on the same route. Following are some recommendations to keep in mind when prescribing climbing endurance sets/:

-design new routes for each training session, this does not give time to the climber to fits technically to the route

-Using previously known routes, where there is no possibility of technical improvement, which will definitely be a greater difficulty than those proposed above.

- Monitoring the execution time of each route, that is not reduced sharply, thus losing the desired intensity of the effort to produce the corresponding adaptations.

What we must not do is to use the same route several sessions, so the intensity will be decreasing as the technique is suited to the route, and therefore the training stimulus will be of lower quality.
Juan Martin Miranda
Bottom of Form



References:
España-Romero, V., Jensen, R. L., Sanchez, X., Ostrowski, M. L., Szekely, J. E., & Watts, P. B. (2011). Physiological responses in rock climbing with repeated ascents over a 10-week period. European Journal of Applied Physiology


Wednesday, May 25, 2011

TRAINING SEMINAR AND CONFERENCE IN ECUADOR!!

Wednesday, March 23, 2011

SELF-HANDICAPS!!!

Prof. Juan Martín Miranda

How many times we hear in a crag or in a comp, that wall conditions do not help, that previous night we didn´t sleep well, that the holds are humid, that I do not have enough strength, etc., especially when climbing is stimulated by evaluation pressure, like public approval (not necessarily in a competition, but the pressure of the nearby friend), achieving a new onsight or redpoint level, or a competition, where the uncertainty for the success or failure is an important agent of pressure. These self-handicaps can be real or imaginary.

Self-handicapping are any action or choice that prepare a person to be responsible of failure. In agreement with Jones and Berglas (1978), the self- handicaps are obstacles created by the individuals in anticipation to a performance failure. These behaviors allows to externalize the mistakes and failures and internalize the successes, accepting the credit of the achievements and allowing excuses for the failures. It has a double function, it allows the individual to diminish all that of the personal skill that plays a major role in failure (protecting the selfsteem) and in case of success, it increases the skill of the sportmen, since the success was obtained in spite of the obstacles. (increasing the selfesteem) (Prapavessis y Groove, 1998)

Martin and Brawley (2010) concludded that self-handicap can also be understood from the own efficiency. The sportsmen would use excuses in situations where they have poor efficiency for their skills or to introduce themselves in a certain way (i.e.: I am not good at overhangs, technical moves, etc.).

Those individuals with low selfsteem tends to use more frequently the self-handicapping before a performance that those of high selfsteem, since they encounter more situations where they are uncertain about their ability to solve the task (Prapavessis and Grove, 1998). The athletes who frequently use the excuses incline to take commonly the responsibility of potential failures out of himself and in case of team sports, inside the group (Prapavessis and cols, 2010).

All these excuses that we self-impose, are impediments before a performance. People who use these impediments or self-handicaps can be divided in two categories: chronic or occasional. The chronic selfhandicappers use self-handicaps that are more applicable over time and in varied situations, as physical or psychological symptoms. The occasional ones use self-handicaps for every specific situation.(Ferrand and cols, 2006)

The more frequent self-handicaps used by the sportsmen before a competition are the study and physical conditions or injuries, but they change depending on age, level and sex.

Ferrand and cols. (2006) analyzed the self-handicaps of 6 french elite teenager climbers in three major competitions, where they had the aptitude to reach the podium, with this goal setted by their coach. Before every competition, they had to report their self-handicaps that might affect performance.

The results that the study showed are summarized in the following table. Self-handicaps can be categorized in 6 categories.



It has been argued that the criterion that the trainers use can impact in the way that the climbers perceive the environment, which can be a source of stress in the teenagers elite athletes. The climbers of this study report different types of impediments that allowed them to deflect the reason of the failure away from their sport competente and reduce the coach´s expectations in the subsequent performance.

The repeated use of self-handicaps might place the athletes at-risk of motivacional difficulties that might have a negative effect in the long-term development and performance.

The authors conclude: ¨it is important for the trainers to gain knowledge of self-handicapping, to take into account the rehaznos underlying self-handicapping hmong teenagers for practical implications, and to examine more closely the ego relevante of high level context which may be an important factor determining self-handicapping in a sport context.¨

One important goal for coaches is to understand the reason of the previous impediments and to work on them to impede a performance reduction. Too many exigency, and the exposition of highly sressful goals in young climbers can lead to long-term consequences, like quiting the sport.

References:

1. Ferrand, C., Tetard, S., & Fontayne, P. (2006). Self-Handicapping in Rock Climbing: A Qualitative Approach. Journal of Applied Sport Psychology, 18: 3, 271-280

2. Jones, E. E., & Berglas, S. (1978). Control of attributions about the self through self-handicapping strategies: The appeal of alcohol and the role of underachievement. Personality and Social Psychology Bulletin, 4, 200-206.

3. Martin, K.A. & Brawley, L.R. (2002). Self-Handicapping in Physical Achievement Settings: The contributions of Self-Esteem and Self-Efficacy. Self and Identity, 1:4, 337-351

4. Prapavessis, H. & Grove, J.R. (1998). Self-handicapping and Self-steem. Journal of Sport Applied Psychology, 10:2, 175 – 184

5. Prapavessis, H., Grove, J.R. & Eklund (2010). Self-Presentational Issues in Competition and Sport. Journal of Sport Applied Psychology, 16:1, 19-40

6. Smith, T.W., Snyder, C.R., & Handelsman, M.M. (1982). On the self-serving function of an academic wooden leg: Test Anxiety as a self-handicapping strategy. Journal of Personality and Social Psychology, 42, 314–321.